Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 60(25): 7706-7713, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613240

RESUMO

Bee honey is an exceptionally nutritious food with unique chemical and mineral contents. This report introduces the use of the second-harmonic generation (SHG) microscopy for imaging honey sugar crystals' morphology as an alternative for its authentication process. The crystals and their boundaries are clearly observed with SHG compared with bright-field microscopy, where the liquid honey avoids the visualization of a sharp image. Four different honey samples of Mexico's various floral origins and geographical regions are analyzed in our study. These samples are representative of the diversity and valuable quality of bee honey production. The SHG image information is complemented with Raman spectroscopy (RS) analysis, since this optical technique is widely used to validate the bee's honey composition stated by its floral origin. We relate the SHG imaging of honey crystals with the well-defined fructose and glucose peaks measured by RS. Size measurement is introduced using the crystal´s length ratio to differentiate its floral origin. From our observations, we can state that SHG is a promising and suitable technique to provide a sort of optical fingerprint based on the floral origin of bee honey.


Assuntos
Cristalografia/métodos , Mel/análise , Microscopia de Geração do Segundo Harmônico , Açúcares/química , Animais , Abelhas , Citrus , Desenho de Equipamento , Flores , Qualidade dos Alimentos , Glucose/química , México , Prosopis , Rhizophoraceae , Microscopia de Geração do Segundo Harmônico/instrumentação , Análise Espectral Raman
2.
Opt Express ; 27(19): 26251-26263, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674511

RESUMO

An interferometer with a minimum of optical hardware is employed to measure invasiveness the size of biological samples. Nowadays, there are several techniques in microscopy that render high quality resolved images. For instance, consider optical microscopy that has been around for over a century and has since developed in different configurations such as: bright and dark field, phase contrast, confocal, polarized, and so on. However, only a few of these use interferometry to retrieve not only the sample's amplitude but also its phase. An interesting example of the latter is digital holography which normally uses a Mach Zehnder interferometer setup. In the research work reported here a transmission digital holographic interferometer designed with a simple and minimal optical hardware, that avoids the drawback of the small field of view present in classical optical microscopic systems, is used to measure the microscopic dimensions of pollen grains. This optical configuration can be manipulated to magnify and project the image of a semitransparent sample over a neutral phase screen. The use of a collimated beam through the sample prevents geometrical distortions for high magnification values. The measurements using this novel configuration have been validated using a standard precision pattern displacement specimen with certified dimensions. As proof of principle, microscopically characterized pollen grains are placed in the transmission set up in order to estimate their dimensions from the interferometrically retrieved optical phase. Results match and thus show a relation between the sample's size and the optical phase magnitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...